A molecular structure of mixed valence biruthenocenium ($\mathrm{Ru}^{\mathrm{II}} \mathrm{Ru}^{\mathrm{IV}}$) salts $\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{L}\right]^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2}\left(\mathrm{~L}=\mathrm{NCCH}_{3}, \mathrm{~N}(\mathrm{CH})_{4} \mathrm{~N}\right)$

Masanobu Watanabe ${ }^{\mathrm{a}, *}$, Izumi Motoyama ${ }^{\mathrm{a}}$, Toshio Takayama ${ }^{\text {a }}$, Masaru Sato ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, Faculty of Engineering. Kanagawa Unic ersity, Rokkakubashi, Yokohama 221, Japan
${ }^{1}$ Chemical Analysis Center, Saitama Unicersity, Urawa, Saitama 338, Japan

Received 30) October 1996; received in revised form 26 March 1997

Abstract

The conformation of the oxidation product (A) of biruthenocene (RcRc) with p-benzoquinone containing boron trifluoride diethylether complex is $\left[\operatorname{RcRcC} C_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right]^{+}\left(\mathrm{BF}_{+}^{-}\right)_{2}$ in which p-benzoquinoen is ligated to the $\mathrm{Ru}^{\mathrm{IV}}$ center. The recrystallization of \mathbf{A} from the mixture of nitromethane containing small amount of acetonitrile or pyrazine gives nixed-valence cations formulated as $\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{L}\right]^{2+}$ ($\mathrm{L}=$ acetonitrile 1 and pyrazine 2), in which L is coordinated to the $\mathrm{Ru}^{\mathrm{IV}}$ center. The crystal of 1 formulated as $\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{NCCH}_{3}\right]^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{NO}_{2}$ (1), is found to be orthorhombic, space group Pbca, $a=$ 14.255(7), $b=37.105(10), c=10.051(4) \AA, V=5316(4), Z=8$, and the final $R=0.054$ and $R_{w}=0.059$. The similar pyrazine salt 2 formulated as $\left[\mathrm{Ru}^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{N}(\mathrm{CH})_{4} \mathrm{~N}^{2}+\left(\mathrm{BF}_{4}^{-}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right)_{2}\right.$ is found to be triclinic, space group $\mathrm{PI}, ~ a=9.006(2)$, $b=19.233(4), c=28.907(10) \AA, \alpha=89.45(1)^{\circ}, \beta=86.10(3)^{\circ}, \gamma=87.85(2)^{\circ}, V=4991(2), Z=2$, and the final $R=0.077$ and $R_{\mathrm{w}}=0.09$). The unit cell has three independent molecules (2A, 2B, 2C). The Ru(IV) -N distances ($2.15(1) \AA$ A $2 \mathrm{~A}, 2.11(1)$ for 2B and $2.15(1)$ for 2 C) are longer by ca. $0.1 \AA$ than that of 1 because of bulky molecule of pyrazine. Both cations (1,2) have wedge-sharp structure due to the $\mathrm{Ru}-\mathrm{N}$ bond, the dihedral angles between the Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ rings of the $\left[\mathrm{LRu}{ }^{\mathrm{IV}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{2+}$ moiety are 38.70° for 1 , $\left.38.77^{\circ}(\mathbf{2 A}), 40.84^{\circ} \mathbf{(2 B}\right)$ and $41.67^{\circ}(\mathbf{2 C})$ for 2 . The nucleophilicity to the $\mathrm{Ru}^{\text {iv }}$ increases in the order $\mathrm{Cl}>$ pyrazine $>$ acetonitrile $>p$ benzoquinone and unlike the case of mixed-valence halobiruthenocenium cations ($[\operatorname{RcRcX}]^{+}: \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$), no temperature dependent ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were observed for 1 and 2 in solution, implying the absence of two-electron exchange reaction hetween the Ru" and Ru' ${ }^{1 \mathrm{~N}}$. (1) 1997 Elsevier Science S.A.

Keswords: Metallocene; Ruhenocene: X-ray diffraction; Mixed-valence

1. Introduction

The chemistries of $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}\right)\right]^{+}\right.$and related compounds have been reported by Kirchner et al. [1]. Based on the results of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR studies, they concluded that there is strong interaction between the Ru and carbonyl group in the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}$ ligand, resulting in higher oxidation state of Ru. Thus, the cation reacts with some nucleophiles (L) such as $\mathrm{AsMe}_{3}, \mathrm{AsPh}_{3}, \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{CH}_{3} \mathrm{CN}$ giving pseudohaloruthenocenium type cations $\left[\mathrm{RuCp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{L}\right]^{+}[1-$ 3]. Recently, Ogino and co-workers reported the X-ray diffraction studies of interesting dicationic octamethyl [3]metallocenophanium salts prepared by the electrochemical oxidation in $\mathrm{CH}_{3} \mathrm{CN}$ and formulated as

[^0]$\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{M}^{\mathrm{IV}} \mathrm{NCCH}_{3}\right]^{2+}$ in which the N atom of acetonitrile was coordinated to the M^{IV} (Ru, Fe) center in end-on form (the $\mathrm{M}^{\text {1V }}-\mathrm{N}$ distance, 2.072 (6) for Ru; 1.916 (6) A for Fe). Especially the latter Fe analogy is the first dicationic salt of ferrocene derivatives containing $\mathrm{Fe}^{\mathrm{lV}}$ [4,5]. Although both groups' chemistries provide a great important information on the progress of the metallocene chemistry, their studies are within the range of mononuclear systems. Recently, binuclear metallocene chemistry plays an important role in the development of organometallic chemistry, because their chemical behaviors are differ significantly from those of analogous mononuclear complexes owing to a certain interaction between the central transition metals. The present authors have been reported the some mixed valence halobiruthenocenium cations $\left(\mathrm{RcRcX}^{+}\right)$formulated as $\left[\mathrm{Ru}^{\prime \prime} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Cp}\right.$ $\left.\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{X}\right]^{+}$with $\mathrm{Ru}^{\text {lv }}-\mathrm{X}$ bond. On the results of tempera-
ture dependent ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopies [6-10], two-electron exchange reactions between the $R u^{\prime \prime}$ and $\mathrm{Ru}^{\text {IV }}\left[\mathrm{XRu}^{\mathrm{IV}} \mathrm{Ru}^{\text {II }} \Leftrightarrow \mathrm{Ru}^{\text {II }} \mathrm{Ru}^{\mathrm{IV}} \mathrm{X}\right]$ with X migration were observed and their activation energies are deeply concerned with the conformational change between the $\mathrm{Ru}{ }^{\text {II }} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $\left[\mathrm{XRu}^{\mathrm{IV}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moieties hased on the results of their X-ray diffraction studies ($\mathrm{X}=\mathrm{Cl}$. I) $[6,7]$. To extend our and above mentioned studies, two nonhalobiruthenocenium salts 1,2 formulated as $\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{L}\right]^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2}$ with the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{L}$ bond have been prepared. Herein, these crystal structural and NMR studies are discussed as compared with those of reported RcRcX^{+}and above two groups’ salts.

2. Experimental

2.1. Syntheses

Salt \mathbf{A} was prepared as follows; a solution of p benzoquinone (30 mg) in hexane (100 ml) containing boron trifluoride diethyl ether complex (2 ml) was added to a solution of RcRc ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) in benzene (100 ml). Dark-brown precipitates were prepared (A) immediately in high yield ($78 \mathrm{mg} ; 95 \%$), see Scheme 1, which was filtered, washed with hexane and dried in vacuo. Anal. Found: $\mathrm{C}, 42.35 ; \mathrm{H}, 2.84$; $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{O}_{2} \mathrm{Ru}_{2}$. Calc.: C, 42.07; H. 2.99\%. Infrared spectra (KBr): 3103, 1632, 1537, 1477. 1219, 1100-1000 (broad, $\mathrm{BF}_{\downarrow}^{-}$), 875, 835, 762, 669, 530, 447 cm^{-1}. The precipitates $\mathbf{A}(78 \mathrm{mg})$ were well soluble in nitromethane (20 ml) containing small amount of aceto-
nitrile (ca. 1 ml) giving a deep-red solution. Single crystals suitable for X-ray studies of 1 formulated as $\left[\mathrm{RcRcNCCH}_{3}\right]^{-+}\left(\mathrm{BF}_{4}^{-}\right)_{2} . \mathrm{CH}_{3} \mathrm{NO}_{2}$ were obtained by diffusion of diethyl ether into the solution at ca. 260 K for several days, the well-formed crystals ($24 \mathrm{mg}, 0.04$ mmol; yield 36%) were obtained. Anal. Found: C, 37.49; H, 3.21; N, 3.58. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Ru}_{2}$. Calc.: C, 37.52; H, 3.29; N, 3.81\%. Infrared spectra (KBr): 3086, 1536, 1408, 1385, 1300, 1100-1000 (broad, BF_{4}^{-}), $843,820,667,598,434,421 \mathrm{~cm}^{-1}$. The salt 2 formulated as $\left[\mathrm{RcRcN}(\mathrm{CH})_{4} \mathrm{~N}\right]^{++}\left(\mathrm{BF}_{4}\right)_{2} \cdot\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right)_{2}$ was prepared by the same method for preparation of 1 by using pyrazine (ca. 50 mg) instead of acetonitrile. The well-formed red plane crystals were obtained (yield ca. 30%). Anal. Found: C, 37.42; H, 3.32.; N, 6.65. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Ru}_{2}$. Calc.: C, $37.34 ; \mathrm{H}, 3.37 \mathrm{~N}$, 6.70%. Infrared spectra (KBr): $3095,1636,1485,1410$, 1300, 1100-1000 (broad. BF_{4}^{-}), 606, 534, 523, 469 cm^{-1}. The 'H NMR and ${ }^{13} \mathrm{C}$ CP/MAS NMR measurements and dipolar dephasing experiments were carried out by the same method reported previously [11].

2.2. X-ray crustallography

Crystal ($0.2 \times 0.03 \times 0.5 \mathrm{~mm}$) of 1 was selected. X -ray intensities were recorded on a Rigaku AFC-6A automated four circle X-ray diffractometer with graphite mono-chromatized Mo-K α radiation ($\gamma=0.71073 \AA$) at $25 \pm 1^{\circ}$ using the $\omega-2 \theta$ scan mode with a scanning speed of $4^{\circ} \mathrm{min}$. The lattice parameters were determined by a least-squares calculation with 25 reflections. Crystal stability was checked by recording three standard reflections every 150 reflection, and no significant vari-

Scheme 1.

Table 1
Crystal and intensity collection data for 1 and 2

	1	2
Formula	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Ru}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{7 \times} \mathrm{H}_{64} \mathrm{Ru}_{6} \mathrm{~B}_{6} \mathrm{~F}_{24} \mathrm{~N}_{12} \mathrm{O}_{12}$
Formula weight	$736.20{ }^{-4}$	2508.54
Crystal dimensions ($\mathrm{mm}^{\text {² }}$)	$0.2 \times 0.03 \times 0.5$	$0.1 \times 0.1 \times 0.2$
Space group	Pbca	Pī
$a(\mathrm{~A})$	14.255(7)	9.006 (2)
$b(\mathrm{~A})$	37.105(10)	19.233(4)
$c(A)$	10.051(3)	28.907 (10)
$\alpha /{ }^{\circ}$	-	89.45 (1)
$\beta /^{\circ}$	-	86.10 (3)
$\gamma /{ }^{\circ}$	-	87.85 (3)
$V\left(\AA^{\circ}{ }^{\text {i }}\right.$	5316(4)	4991(2)
Z	8	2
T (K)	298	298
$\mu\left(\mathrm{cm}^{-1}\right)$	12.18	9.90
$D_{\text {k }}$	1.840	1.669
No. of reflections measured	4089	22162
No. of observed reflections	$1691(\mathrm{I}>1.5$ \%(I))	8992
2θ scan range (deg)	50.0	60
Scan width	$0.79+0.30 \tan \theta$	$1.15+0.30 \tan \theta$
p	0.033	0.04
R	0.054	0.077
$R_{\text {w }}$	0.059	0.090
($\left.J^{\prime} / \sigma\right)_{\text {max }}$	0.01	0.00
$\Delta \rho \min , \Delta \rho \max / \mathrm{e}^{-3}$	-0.58,0.68	-0.97,1.88

ations were observed. For 1, 4089 reflections were collected in the range $4^{\circ} \leq 2 \theta \leq 50^{\circ}$ of which 1691 reflections with Iobsd $>1.5 \sigma$ (Iobsd) were used for the structure determination. The scan width was $0.79+0.3$ $\tan \theta$. The refinement 352 variable parameters converged to $R=\Sigma\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| \Gamma_{0}\right|=0.054, \quad R_{\mathrm{w}}=\right.$ $\left.\left[\sum u\left(\left|F_{0}\right|-F_{\mathrm{c}} \mid\right)^{2} / \sum w F_{0}^{2}\right)\right]^{1 / 2}=0.059$, and standard deviation of an observation of unit weight was 1.42.

For 2, crystal $(0.1 \times 0.1 \times 0.2)$ was selected. Due to the instability of 2, the data were collected using a Mac Science MXC18K diffractometer with graphite monochromatized Mo-K α radiation ($\gamma=0.71073 \AA$) at $25 \pm$ $1^{\circ}, 22162$ reflections were collected in the range $4^{\circ} \leq$ $2 \theta \leq 60^{\circ}$ of which 8992 reflections with Iobsd $>2.5 \sigma$ (lobsd) were used for the structure determination. The refinement 1380 variable parameters converged to $R=$ $0.077, R_{\mathrm{w}}=0.090$, and standard deviation of an observation of unit weight was 1.00 .

Both structure (1, 2) were solved by heavy-atom Patterson methods and expanded using Fourier techniques using the TEXSAN crystallographic software package [12]. The non-hydrogen atoms were refined anisotropically by full matrix least squares. All hydrogen atoms were located at the calculated positions, and were included isotropically in the refinement. Neutral atom scattering factors were taken from Cromer and Waber [13]; anomalous dispersion effects corrections were included in $F_{\text {cal }}$ [14], the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley [15]. Crystallo-
graphic data for 1 and 2 and some of the experimental conditions for the X-ray structure analysis are listed in Table 1.

3. Results and discussion

RcRc is oxidized by p-benzoquinone in benzene containing boron trifluoride diethyl ether complex giving intermediate salt \mathbf{A}, this is well soluble in $\mathrm{CH}_{3} \mathrm{CN}$ and other polar solvents giving deep-red solutions. From the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in $\mathrm{CD}_{3} \mathrm{CN}$, the six-sharp signals ($\delta_{\mathrm{H}} 6.24,5.72,5.71,5.52,5.32$ and 4.90 ; ascribed to the $\left[\mathrm{Ru}^{\text {II }} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}}\right]^{2+}$ cation, the NMR discussion is described in latter) and one signal (δ_{H} 6.63) are observed. The latter δ_{H} is consistent with the value of free p-benzoquinone itself in the same conditions, thus \mathbf{A} contains at least RcRc^{2+} and p-benzoquinone. Fig. 1 shows ${ }^{13} \mathrm{C}$ CP/MAS NMR spectra of \mathbf{A} $(\mathbf{a}), \operatorname{RcRc}(b)$ and p-benzoquinone (c). Sharp three signals are observed for RcRc and the signal $\delta 87.5$ is ascribed to the bridged C atom, $\delta 72.3$ to Cp and $\mathrm{C}_{2.5}$ and $\delta 69.1$ to $\mathrm{C}_{3.4}$ on the basis of our previous studies [8]. Two broad peaks ($\delta 187.1,137.5$) are observed for p-benzoquinone, the former is ascribed to the carbonyl and the latter is to olefine based on the result of ${ }^{13} \mathrm{C}$ NMR spectrum in solution ($\delta \quad 187.3$ and 136.6 in CDCl_{3}). Salt A gives five signais and the higher field two signals ($\delta 73: 2,76.5$) are ascribed to the Cp and

Fig. $1 .{ }^{13} \mathrm{C}$ cP/MAs NMR spectra of (a) A. (b) ReRc, and (c) p-benzoquinone. Spining side bands are marked with astetisks.
$\mathrm{C}_{2.5}$ and $\mathrm{C}_{3.4}$ of the $\mathrm{Ru}{ }^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety and the signal ($\delta 89.0$) and a shoulder ($\delta 93.1$) are to those of the $\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{2+}$ moiety, respectively, on the results of our previous studies of RcRcX^{+}[8]. The lower field two signals ($\delta 150.4,117.8$) are ascribed to the carbonyl and olefine C atoms of the p-benzoquinone, respectively, (the assignment of the signals is carried out by using the dipolar dephasing technique [11]). These large higher field shift (ca. 37, 20 ppm) compared with the values of the original p-benzoquinone suggests the reaction product \mathbf{A} is a coordination complex of them, i.e., to fulfill the 18 -electron ruie of $\mathrm{Ru}^{1 \mathrm{~V}}$. p benzoquinone is forced to ligate to the $\mathrm{Ru}^{\text {IV }}$ center of the $\left[\mathrm{Ru}^{\text {IV }} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety, giving the $\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right]^{+}$fragment. From the infrared spectrum of A, the v_{co} signal is $1632 \mathrm{~cm}^{-1}$, the signal shifts toward the lower frequency regions ca. 20 cm^{-1} compared with the value of free p-benzoquinone ($\nu_{\mathrm{co}} 1651 \mathrm{~cm}^{-1}$). This red-shift is too small to consider the $\mathbf{C O}$ coordination to the $\mathrm{Ru}^{\text {IV }}$ center (Tuck et al. reported that the ν_{CO} band shifts to the ca. 1200-1400 cm^{-1} regions owing to the $\mathrm{C}-\mathrm{O}-\mathrm{M}$ character when the CO group of o-benzoquinone is ligated to the M atoms ($\mathrm{M}=\mathrm{In}, \mathrm{Ga}, \mathrm{Sn}, \mathrm{Zn}$ etc. [16]). A lack of success in preparing single crystals \mathbf{A} of suitable size for the X-ray diffraction prevents the determination of the structure, however based on the results of the present studies (one kind of CO signal is found for the ${ }^{13} \mathrm{C} \mathrm{CP} /$ MAS NMR spectrum and the elemental analysis data), the π-complex formulated as $\left[\mathrm{Ru}{ }^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{O}_{2}\right]^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2}$ in which π-electrons (2e) of the olefine in p-benzoquinone are ligated to the $\mathrm{Ru}^{\mathrm{IV}}$ may be proposed for A. While in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ solution of \mathbf{A} containing small amount of $\mathrm{CH}_{3} \mathrm{CN}$, well-formed single
crystals 1 suitable for X-ray diffraction were prepared and a detailed structural, NMR discussion of 1 will be presented in the latter section.

3.1. Structure of 1

The NMR and elemental analysis data of 1 suggest the conformation $[\mathrm{RcRcNCCH} 3]^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2} . \mathrm{CH}_{3} \mathrm{NO}_{2}$, the p-benzoquinone of \mathbf{A} is easily substituted by $\mathrm{CH}_{3} \mathrm{CN}$ in the solution, see Scheme 1. The crystal form of 1 is orthorhombic, space group Pbca and the final atomic coordinate and equivalent isotropic temperature factors of non-hydrogen atoms, select interatomic distance and angles for 1 are shown in Tables 2-4, respectively, and

Table 2
Atomic coordinates and isotropic temperature factors $\left(\AA^{2}\right)$ for 1

Atom	x	y	$=$	$B_{c q}^{: 1}\left(\AA^{2}\right)$
$\mathrm{Ru}(1)$	0.18439(9)	0.08710(3)	0.0996(1)	3.39
$\mathrm{Ru}(2)$	-0.03364(9)	$0.20561(3)$	0.1299(1)	3.87
F(1)	0.291(1)	0.0781(5)	$0.690(1)$	15.9
F(2)	$0.230(1)$	$0.0517(5)$	$0.518(2)$	13.8
$F(3)$	0.3775(9)	$0.0512(3)$	0.539(2)	10.1
$F(4)$	0.303(1)	0.1009(4)	0.495(2)	13.5
F(5)	0.047(1)	0.1381(4)	0.699(1)	11.3
$F(6)$	-0.024(1)	0.1329(3)	0.504(1)	8.7
F(7)	$0.0966(9)$	0.1699(4)	$0.525(1)$	9.3
$F(8)$	-0.0357(10)	0.1831(3)	0.619(2)	11.0
O(1)	0.054(1)	(0.0040(4)	0.802(2)	11.6
O(2)	-0.046(1)	0.0041(5)	$0.655(2)$	11.7
N(1)	0.2234(9)	(0.1236(4)	-0.041(1)	4.3
N(2)	0.011(2)	0.0188(5)	$0.718(2)$	$7.1)$
C(1)	$0.330(1)$	$0.0697(6)$	$0.1067(2)$	6.0
C(2)	$0.270(2)$	$0.0505(6)$	-0.020(2)	5.7
C(3)	0.208(1)	0.0294(4)	$0.0 .57(3)$	7.0
C(4)	0.232(2)	0.0373(6)	$0.191(2)$	5.9
C(5)	$0.305(1)$	0.0597(6)	$0.192(2)$	6.4
C(6)	$0.08 .3(1)$	0. $1384(4)$	$0.134(2)$	3.2
C(7)	0.041 (1)	$0.1091(5)$	$0.064(2)$	4.3
C(8)	0.039(1)	(0.0799(4)	0.152(2)	5.2
C(9)	0.091 (1)	0.0888(5)	$0.268(2)$	5.3
C(10)	$0.121(1)$	0.1246(4)	$0.253(2)$	4.4
C(11)	$0.092(1)$	0.1759(4)	$0.090(2)$	3.9
C(12)	$0.055(1)$	(). 1884(5)	-0.033(2)	5.0
C(13)	$0.060(2)$	0.2263(6)	-0.024(3)	7.1
C(14)	$0.094(1)$	0.2377(4)	$0.099(3)$	6.0
C(15)	$0.115(1)$	0.2057(5)	0.170(2)	5.0
C(16)	$-0.145(1)$	0. 1774(5)	$0.237(3)$	5.3
C(17)	-0.177(1)	$0.1888(7)$	$0.112(2)$	0.1
C(18)	-0.175(1)	$0.2256(8)$	0.114(3)	7.2
C(19)	$-0.139(1)$	$0.2366(6)$	$0.238(3)$	7.0
C(20)	-0.120(1)	$0.2057(7)$	$0.312(2)$	6.1
C(21)	0.241(1)	0.1421(4)	-0.127(2)	4.6
C(22)	0.267(1)	0.1652(5)	-0.238(2)	6.8
C(23)	$0.032(1)$	0.0560(6)	0.694(3)	9.2
B(1)	$0.305(3)$	0.0729(7)	0.571 (3)	7.4
B(2)	0.020(2)	$0.1545(7)$	0.582(3)	5.8

[^1]Table 3
Select bond distances (\AA) and bond angles (deg) for 1

Bond distance			
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.04(2)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.19(2)$
$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.19(2)$	$\mathrm{Ru}(1)-\mathrm{C}(3)$	$2.21(2)$
$\mathrm{Ru}(1)-\mathrm{C}(4)$	$2.17(2)$	$\mathrm{Ru}(1)-\mathrm{C}(5)$	$2.21(2)$
$\mathrm{Ru}(1)-\mathrm{C}(6)$	$2.41(1)$	$\mathrm{Ru}(1)-\mathrm{C}(7)$	$2.24(2)$
$\mathrm{Ru}(1)-\mathrm{C}(8)$	$2.15(2)$	$\mathrm{Ru}(1)-\mathrm{C}(9)$	$2.15(2)$
$\mathrm{Ru}(1)-\mathrm{C}(10)$	$2.27(2)$	$\mathrm{Ru}(2)-\mathrm{C}(11)$	$2.14(2)$
$\mathrm{Ru}(2)-\mathrm{C}(12)$	$2.16(2)$	$\mathrm{Ru}(1)-\mathrm{C}(13)$	$2.18(2)$
$\mathrm{Ru}(2)-\mathrm{C}(14)$	$2.20(2)$	$\mathrm{Ru}(1)-\mathrm{C}(15)$	$2.16(2)$
$\mathrm{Ru}(2)-\mathrm{C}(16)$	$2.18(2)$	$\mathrm{Ru}(2)-\mathrm{C}(17)$	$2.15(2)$
$\mathrm{Ru}(2)-\mathrm{C}(18)$	$2.15(2)$	$\mathrm{Ru}(1)-\mathrm{C}(19)$	$2.14(2)$
$\mathrm{Ru}(2)-\mathrm{C}(20)$	$2.20(2)$	$\mathrm{N}(1)-\mathrm{C}(21)$	$1.13(2)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.45(2)$	$\mathrm{B}(1)-\mathrm{F}(1)$	$1.22(3)$
$\mathrm{B}(1)-\mathrm{F}(2)$	$1.44(2)$	$\mathrm{B}(1)-\mathrm{F}(3)$	$1.35(2)$
$\mathrm{B}(1)-\mathrm{F}(4)$	$1.29(2)$	$\mathrm{B}(2)-\mathrm{F}(5)$	$1.38(3)$
$\mathrm{B}(2)-\mathrm{F}(6)$	$1.28(3)$	$\mathrm{B}(2)-\mathrm{F}(7)$	$1.36(3)$
$\mathrm{B}(2)-\mathrm{F}(8)$	$1.37(3)$		
$\mathrm{Bond} a n g l e s$			
$\mathrm{C}(6)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$74.7(5)$	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$80.5(7)$
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$83.0(7)$	$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{Ru}(1)$	$174(1)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(2)$	$178(2)$	$\mathrm{O}(1)-\mathrm{N}(2)-\mathrm{C}(23)$	$117(2)$
$\mathrm{O}(1)-\mathrm{N}(2)-\mathrm{O}(2)$	$122(2)$	$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{C}(23)$	$120(2)$

ORTEP drawing of 1 is shown in Fig. 2 along with the atom numbering system. The cation of 1 is in trans conformation as with neutral RcRc and RcRcX^{+}cations $[6,7]$. The $\mathrm{Ru}(1) \cdot \cdot \operatorname{Ru}(2)$ distance is found to be $5.393(2) \AA$, which is closer to the reported values of $\mathrm{Ru}^{\text {II }} \cdots \mathrm{Ru}^{\mathrm{IV}}$ of $\mathrm{RcRcX}^{+}(5.464(4) \AA$ for $\mathrm{X}=\mathrm{I}$ and $5.366(1) \AA$ for $\mathrm{Cl}[6,7])$ cations. The mean $\mathrm{Ru}-\mathrm{C}_{\text {ring }}$ ($\mathrm{C}_{\text {ring }}$; C atoms of $\mathrm{C}_{5} \mathrm{H}_{4}$ and $\mathrm{C}_{5} \mathrm{H}_{5}$) and $\mathrm{Ru}-\mathrm{Cp}(\mathrm{Ru}-$ $\mathrm{C}_{5} \mathrm{H}_{5}$ and $\mathrm{Ru}-\mathrm{C}_{5} \mathrm{H}_{4}$) distances are found to be 2.22(7), $1.87(1) \AA$ for $R u(1)$ and 2.17(2), $1.82(1) \AA$ for $R u(2)$, respectively, and the formal oxidation states of $R u(1)$ and $R u(2)$ must be assigned as $R u^{I V}$ and $R u^{\prime \prime}$, respectively, on the results of previous studies [6,7], i.e., the cation is forrnulated as $\left[\mathrm{Ru}{ }^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Cp}\right.$ $\left.\mathrm{Ru}^{\mathrm{IV}} \mathrm{NCCH}_{3}\right]^{2+}$. The most interesting structural feature is found in the $\left[\mathrm{Ru}^{1 \mathrm{~V}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{NCCH}_{3}\right]^{2+}$ moiety, i.e., the $\mathrm{CH}_{3} \mathrm{CN}$ molecule (practically linear, the $\mathrm{N}-\mathrm{C}(21)-$ $C(22)$ angle; $\left.178(2)^{\circ}\right)$ is coordinated to the $R u^{1 V}$ center in η^{1}-fashion (end-on form) as with Kirchener's and

Table 4
Selected Bond lengths (\AA) of 1 and 2 and angles (deg)

	$\mathbf{1}$	$\mathbf{2}$		
		\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathrm{Ru}^{\mathrm{II}} \cdot \cdot \mathrm{Ru}^{\mathrm{IV}}$	$5.393(2)$	$5.384(4)$	$5.434(3)$	$5.385(3)$
$\mathrm{Ru}^{\mathrm{II}}-\mathrm{Cp}$	$1.82(1)$	$1.81(1)$	$1.82(1)$	$1.82(1)$
$\mathrm{Ru}^{\mathrm{IV}}-\mathrm{Cp}$	$1.87(1)$	$1.88(2)$	$1.87(1)$	$1.88(1)$
$\mathrm{Ru}^{\mathrm{II}}-\mathrm{C}_{\text {ring }}$	$2.17(2)$	$2.17(3)$	$2.17(3)$	$2.17(3)$
$\mathrm{Ru}^{\mathrm{IV}}-\mathrm{C}_{\text {ring }}$	$2.22(7)$	$2.20(9)$	$2.22(8)$	$2.23(9)$
$\mathrm{Ru}-\mathrm{N}$	$2.04(2)$	$2.15(1)$	$2.11(1)$	$2.15(1)$
Dihedral angle	38.70	38.77	40.84	41.67
of $\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{Ru}_{5}^{\mathrm{IV}} \mathrm{H}_{4}$				
$\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{Ru}^{\mathrm{IV}} \mathrm{C}_{5} \mathrm{H}_{4}$	2.20	3.13	3.10	3.03

Fig. 2. ORTEP drawing of 1 with the thermal ellipsoids at the 40% probability level; perspective view with atomic numbering of the atoms (button), projection of a cation onto the Cp plane (top).

Ogino's and others M-NCCH 3 complexes [$1-5,16-20$]. The $\mathrm{Ru}^{\mathrm{LV}}-\mathrm{N}$ distance is $2.04(2) \AA$, which is the smallest one of all the values of the reported analogous ruthenocene- NCCH_{3} complexes (e.g., 2.072(6) \AA for $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Ru}^{\text {IV }} \mathrm{NCCH}_{3}\right]^{2+}$ [4]. 2.064(7) \AA for $\left[\mathrm{RuCp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{OPPh}_{3}\right) \mathrm{NCCH}_{3}\right]^{2+}$ [3], 2.057(5) \AA for $\left[\mathrm{RuCp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{NCCH}_{3}\right]^{+}[2]$). Although the $\mathrm{M}-\mathrm{N} \equiv \mathrm{C}$ angle is linear perfectly for $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{M}^{\text {IV }}\right.$ $\left.\mathrm{NCCH}_{3}\right]^{2+}(\mathrm{M}=\mathrm{Ru}, \mathrm{Fe})[4,5]$, the $\mathrm{Ru}(1)-\mathrm{N}(1) \equiv \mathrm{C}(21)$ angle is pseud-linear (the angle is $174(1)^{\circ}$ which is closer to the value of $\left.\left[\mathrm{RuCp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{NCCH}_{3}\right)\right]^{2+}$ (175.5(6) ${ }^{\circ}$) and other $\mathrm{M}-\mathrm{NCCH}_{3}$ complexes [17-20] probably because of steric hindrance between the $\mathrm{CH}_{3} \mathrm{CN}$ and the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ ligand.

The $\mathrm{C} \equiv \mathrm{N}$ distance is $\mathrm{I} .13(2) \AA$, which is significantly shorter than the value of free $\mathrm{CH}_{3} \mathrm{CN}(1.1571 \AA)$ [21]. It is well known that the $\mathrm{C} \equiv \mathrm{N}$ distance is decreased when $\mathrm{CH}_{3} \mathrm{CN}$ is coordinated to the metal atom in endon form (e.g., 1.086(11) \AA for $\left[\mathrm{C}_{5} \mathrm{Me}_{+}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Ru}^{\mathrm{IV}} \mathrm{NCCH}_{3}\right]^{+}, 1.150(11) \AA$ for $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Fe}^{\mathrm{IV}} \mathrm{NCCH}_{3}\right]^{+}$and 1.133(7) \AA for $\left.\left[\operatorname{RuCp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{NCCH}_{3}\right)\right]^{2+}$), while the bond length is increased $(1.200(10)$ and $1.211(10) \AA$ for $\mathrm{Cp}_{2} \mathrm{MoCH}_{3} \mathrm{CN}$ [22]) when $\mathrm{CH}_{3} \mathrm{CN}$ is coordinated to the metal atom in side-on form (η^{2}). Thus, the CN distance found in 1 is a reasonable one as an end form. In the infrared spectrum, the expected $\mathrm{C} \equiv \mathrm{N}$ stretching
frequency is too weak to observe, as with Ogino's molecules $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{M}^{\mathrm{IV}} \mathrm{NCCH}_{3}\right]^{2+}$ [23]. The other interesting structural feature of the cation 1 compared with the reported RcRcX^{+}is the direction of the $\mathrm{Ru}-\mathrm{NCCH}_{3}$ bond toward the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ plane, as shown in Fig. 2; i.e., the $\mathrm{CH}_{3} \mathrm{CN}$ molecule is coordinated to the $\mathrm{Ru}^{\mathrm{IV}}$ from the oblique direction of the plane (the torsion angle $\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(6)-\mathrm{C}(11)$; ca. 20°) owing to satisfy the closed packing described in detail later.

Because of the shorter $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{N}$ distance of 1 compared with others $\mathrm{M}-\mathrm{NCCH}_{3}$ complexes, the Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ planes in $\mathrm{Ru}^{\text {iv }}$ side are slanted largely; the dihedral angle between the Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ planes is 38.7° (the Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ planes in Ru^{11} are almost parallel; the value is 2.20°), which is larger than the values of $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{M}^{\mathrm{lv}} \mathrm{NCCH}_{3}\right]^{2+}\left(34.5^{\circ}\right.$ for $\mathrm{M}-\mathrm{Fe}$ and 34.83° for Ru) and $\left[\mathrm{RuCp}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{OPPh}_{3}\right) \mathrm{NCCH}_{3}\right]^{+}\left(35.5(7)^{\circ}\right.$ and closer to the value of mixed valence $[\mathrm{RcRcCl}]^{+}\left(39.98^{\circ}\right)[6]$.

Like the case of $\operatorname{RcRcX}{ }^{+}$, the much longer $\mathrm{Ru}(\mathrm{I})-$ $\mathrm{C}(6)$ distance $(2.41(2) \AA$) compared with rest values of $\mathrm{Ru}-\mathrm{C}(2.14-2.22 \AA)$, nonplanarity of the $\mathrm{C}_{5} \mathrm{H}_{4}$ ligand of Ru^{I} side (the dihedral angle between the $\mathrm{C}(6)$ -$C(7)-C(10)$ and $\left.C(7)-C(8)-C(9)-C(10) ; 9.17^{\circ}\right)$ and non-planarity of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ ligand (the dihedral angle between the $C(6-10)$ and $C(11-15) ; 17.04^{\circ}$) were observed. The phenomena were caused by the van der Waals repulsion between the $N(1)$ and bridging carbon atoms ($\mathrm{C}(6), \mathrm{C}(11)$); i.e.., the distance $\mathrm{N}(1) \cdots \mathrm{C}(6)$ (2.72(2) \AA) and $N(1) \cdots C(11)(2.97(2) \AA)$ are much smaller than the sum of the van der Waals radii (3.20 \AA) of the N and C atom [24]), thus $C(6)$ and $C(11)$ atoms are located out of plane $(\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$ $\mathrm{C}(10)$) largely, which gives above mentioned structural features.

A projection of the unit cell along the \mathbf{c} axis of $\mathbf{1}$ is shown in Fig. 3. The cation is aligned along the \mathbf{b} axis and piled along with a axis, these packing decides the direction of $\mathrm{CH}_{3} \mathrm{CN}$ to the $\mathrm{Ru}^{\text {IV }} \mathrm{CpC}_{5} \mathrm{H}_{4}$; i.e., the $\mathrm{CH}_{3} \mathrm{CN}$ molecule is ligated to the $\mathrm{Ru}^{\text {1V }}$ from the oblique direction to reduce the intermolecular steric hindrance between the $\mathrm{CH}_{3} \mathrm{CN}$ moiety and the BF_{+}^{-}when 1 is crystallized (although shortest intermolecular $\mathrm{C}(21) \ldots$ $-F$ and $C(22) \cdots F$ distances are $3.09(3) \AA(F(1))$ and 3.13(2) $\AA(F(8))$, respectively, these values are closer to the sum ($3.05 \AA$) of van der Waals radii of F and C, implying van der Waals contact between them. The $\mathrm{CH}_{3} \mathrm{NO}_{2}$ sits in a gap between the cations. The intramolecular distances of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ are reasonable value; i.e., the $\mathrm{C}(23)-\mathrm{N}(2), \mathrm{N}(2)-\mathrm{O}(1)$ and $\mathrm{N}(2)-\mathrm{O}(2)$ distances are found to be 1.44(3), 1.19(2), 1.16(2) \AA, respectively, and the $\mathrm{C}(23)-\mathrm{N}(2)-\mathrm{O}(1), \mathrm{C}(23)-\mathrm{N}(2)-$ $\mathrm{O}(2)$ and $\mathrm{O}(1)-\mathrm{N}(2)-\mathrm{O}(2)$ angles are $117(2), 120$ (2) and $122(2)^{\circ}$, respectively, and these values correspond well to those of free $\mathrm{CH}_{3} \mathrm{NO}_{2}(\mathrm{C}-\mathrm{N}(1.46 \pm 0.02 \AA)$,

Fig. 3. Projection of the unit cell of 1 along with the c axis.
$\mathrm{N}-\mathrm{O}(1.21 \pm 0.02 \AA)[25]$. However, the two $\mathrm{CH}_{3} \mathrm{NO}_{2}$ molecules sit closer to each other (see in Fig. 3), the intermolecular shortest distance between them suggests no van der Waals contact, while the BF_{4}^{-}and $\mathrm{CH}_{3} \mathrm{NO}_{2}$ molecules are in van der Waals contact each other; i.e., the shortest $F \cdots C(23)$ distance is $3.05 \AA(F(5) \cdots$ $C(23))$ which corresponds to the sum of van der Waals radii of C and F. The average $B-F$ distance is $1.34(7)$ \AA, which is reasonable value as bonding distance.

To investigate two-electron exchange reaction between the $\mathrm{Ru}^{\prime \prime}$ and $\mathrm{Ru}^{\mathrm{IV}}$ as with RcRcX^{+}. the NMR study was carried out for 1 . Salt 1 gives clear ${ }^{\prime} \mathrm{H}-\mathrm{NMR}$ spectrum in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$; i.e., six sharp ring proton signals are found; $\delta 6.64(2 \mathrm{H}, \mathrm{t}, \alpha$-position), $6.08(5 \mathrm{H}$, $\mathrm{s}, \mathrm{Cp}), 6.02$ ($2 \mathrm{H}, \mathrm{t}, \beta$-position) for $\mathrm{Ru}^{\mathrm{IV}}$ moiety and $5.81(2 \mathrm{H}, \mathrm{t} \alpha$-position), $5.67(2 \mathrm{H}, \mathrm{t}, \beta$-position) and $5.00(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp})$ for Ru^{11} moiety. The similar six lines ($\delta 6.24,5.72,5.71,5.52,5.32$ and 4.90 ; they agreed with the values of \mathbf{A} except for the free p-benzoquinone ($\delta 6.63$); i.e., p-benzoquinone of \mathbf{A} is easily substituted by $\mathrm{CD}_{3} \mathrm{CN}$ giving 1) were observed in $\mathrm{CD}_{3} \mathrm{CN}$ although all signals shifted somewhat higher field owing to a higher dielectric constant of $\mathrm{CD}_{3} \mathrm{CN}(\epsilon ; 37.5)$ compared with $\mathrm{CD}_{3} \mathrm{COCD}_{3}(\epsilon ; 20.7)$), and these δ values were summarized in Table 5 . These δ values of ringproton correspond well to the values of trapped-valence state of RcRcX^{+}in the same solution (below ca. 200 K) reported by the present authors [8]; i.e., the formal oxidation states of two Ru are trapped-valence states $\left(\mathrm{Ru}^{\text {II }} \mathrm{Ru}^{\mathrm{IV}}\right.$) at 298 K . Upon heating of the samples (ca. 360 K), no significant broadening of the spectra were observed, which is in sharp contrast with the case of RcRcX ${ }^{+}$, implying no electron exchange reaction between the $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Ru}^{\mathrm{IV}}$ for 1 .

Table 5

Chemical shift is		Assignment
1a	$62.4(1) .5 .72(1)$	$\mathrm{H}_{2.5}, \mathrm{H}_{3.4} \text { position }\left(\mathrm{Ru}^{\mathrm{IV}}\right)$
	5.71(s)	$\text { Cp-ring (Ru' } \left.{ }^{\prime N}\right)$
	5.52(t), 5.32(t)	$\mathrm{H}_{2,5}, \mathrm{H}_{3,4}$ position ($\mathrm{Ru}^{\prime \prime}$)
	4.90 (s)	Cp-ring ($\mathrm{Ru} \mathrm{u}^{\prime \prime}$)
	4.26 (s)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$
1b	6.64(t). 6.02(t)	$\mathrm{H}_{2.5} . \mathrm{H}_{2.4}$ position ($\mathrm{Ru}^{\mathrm{IV}}$)
	6.08 (s)	Cp-ring ($\mathrm{Ru}^{\text {II }}$)
	5.81(t), 5.67(t)	$\mathrm{H}_{2,5}, \mathrm{H}_{3 .+}$ position(Ru^{11})
	5.00 (s)	Cp-ring ($\mathrm{Ru}^{\text {II }}$)
	4.42 (s)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$
	2.54(s)	$\mathrm{CH}_{3} \mathrm{CN}$
2b	9.18(d), $8.74(\mathrm{~d})$	pyrazine
	$6.69(1), 6.09(t)$	$\mathrm{H}_{2.5}, \mathrm{H}_{3.4}$ position ($\left.\mathrm{Ru}^{\mathrm{IV}}\right)$
	6. 16 (s)	Cp-ring ($\mathrm{Ru}^{\text {II }}$)
	5.34(t), 5.24(t)	$\mathrm{H}_{2,5} . \mathrm{H}_{3,4}$ position ($\mathrm{Ru} \mathrm{u}^{\prime \prime}$)
	4.88 (s)	Cp-ring ($\mathrm{Ru} \mathbf{u}^{\prime \prime}$)
	4.42 (s)	$\mathrm{CH}_{3} \mathrm{NO}_{2}$

${ }^{4}$ In $\mathrm{CD}_{3} \mathrm{CN}$.
${ }^{1}$ In $\mathrm{CD}_{3} \mathrm{COCD}_{3}$.

The δ values of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and coordinated $\mathrm{CH}_{3} \mathrm{CN}$ are found at $\delta 4.42(3 \mathrm{H}$, s) and $2.54(3 \mathrm{H}, \mathrm{s})$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$. The former is the reasonable value of free $\mathrm{CH}_{3} \mathrm{NO}_{2}$ in the some conditions, while the latter value is lowerfield ($\Delta \delta$) by ca. 0.6 ppm compared with the value of free $\mathrm{CH}_{3} \mathrm{CN}$. This $\Delta \delta$ is significantly smaller than the values of $\left[\mathrm{OsCp}_{2} \mathrm{NCCH}_{3}\right]^{++}$(ca. 0.9 ppm [26]), $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Ru}^{1 \mathrm{~V}} \mathrm{NCCH}_{3}\right]^{2+}$ (ca. 0.9 $\mathrm{ppm}[4]$) and $\left[\mathrm{CpC}_{5} \mathrm{H}_{4} \mathrm{ORu}^{\mathrm{NV}} \mathrm{NCCH}_{3}\right]^{++}$(ca. 0.7 ppm [1]), implying somewhat weaker $\mathrm{Ru}^{\mathrm{V}}-\mathrm{NCCH}_{3}$ bond for 1 in solution compared with above three related complexes. Actually the CH_{3}-signal of the coordinated $\mathrm{CH}_{3} \mathrm{CN}$ was not observed in $\mathrm{CD}_{3} \mathrm{CN}$ solution becaluse of fast exchange reaction between the coordinated $\mathrm{CH}_{3} \mathrm{CN}$ and the solvent $\mathrm{CD}_{3} \mathrm{CN}$ in solution, while the coordinated $\mathrm{CH}_{3} \mathrm{CN}$ molecules does not exchange in $\mathrm{CD}_{3} \mathrm{CN}$ for $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Ru}^{1 V} \mathrm{NCCH}_{3}\right]^{2+}$ cation on the resuits of NMR studies of [4].

The coordinated p-benzoquinone of \mathbf{A} and $\mathrm{CH}_{3} \mathrm{CN}$ of $\mathbf{1}$ are easily substituted by Cl^{-}(using trimethylanrmonium chloride, see Scheme 1) and pyrazine giving mixed valence salts $[\mathrm{RcRcCl}]^{+} \mathrm{BF}_{4}^{-}$and 2 , respectively. the former is determined by using elemental analysis, NMR and X-ray diffraction studies [6], and the detailed structural discussion of 2 is presented in the latter section.

3.2. Stricture of 2

Pyrazine which contuins two N atoms in p-position in the molecule, is a useful bridging ligand, which forms bi- or polynuclear complexes like Creutz-Taube mixed-valence ($\mathrm{Ru}^{\prime \prime} \mathrm{Ru}^{\text {III }}$) complexes and many Cu complexes [27-33]. The reason why pyrazine was se-
lected as a ligand is to prepare related bridged complexes: formulated such as $\left[\mathrm{Ru}^{11} \mathrm{Cp}_{\mathrm{C}} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{1 V}$ $\left.\mathrm{N}(\mathrm{CH})_{4} \mathrm{NRu}^{1 /} \mathrm{Cp}^{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{11} j^{++}$. The salt 2 crystallized in the triclinic space group PI and the final atomic coordinate and equivalent isotropic temperature factors of non-hydrogen atoms, select interatomic distance and angles for 2 are shown in Tables 4 and 6, and Table 7. The unit cell has three independent molecules (unit $2 \mathbf{A}(\mathrm{Ru}(1,2)), 2 \mathrm{~B}(\mathrm{Ru}(3,4))$ and $2 \mathrm{C}(\mathrm{Ru}(5,6)$, as shown in Fig. 4). Because of the three independent three cations and larger thermal motion of six BF_{4}^{-}anions and six $\mathrm{CH}_{3} \mathrm{NO}_{2}$ molecules (because of the thermal motion, the isotropic temperature factors of F in $\mathrm{BF}_{+}^{-} \mathrm{N}$ and O atom in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ are larger compared with the normal values, as shown in Table 5), the final R value is large, however the structural discussion of cation 2A (the basic molecular structure of cation 2A is quite similar to those of 2B and 2C (see Table 4)) is valuable in comparison with those of $\mathbf{1}$.

The ORTEP drawings of the cations 2 A are shown in Fig. 5 along with the atom numbering system. The structure of $\mathbf{2 A}$ is similar to that of $\mathbf{1}$; i.e., pyrazine is ligated only to $\mathrm{Ru}(1)$ in the end-form and not bridged to two Ru atoms. This is the first pyrazine complex which structure determined by X-ray diffraction in ruthenocene analogies. Like the case of 1 , the cation takes trans conformation and the $\mathrm{Ru}(1) \cdots \mathrm{Ru}(2)$ distance is $5.384(4) \hat{A}$. The mean $\mathrm{Ru}-\mathrm{C}_{\text {ring }}$ and $\mathrm{Ru}-\mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right.$, $\mathrm{C}_{5} \mathrm{H}_{4}$) distances are 2.20(9) and 1.88(2) A for Ru(i) and $2.17(3)$ and $1.81(1) \AA$ for $R u(2)$ see Table 4 , respectively, which are closer to the corresponding values of 1 , and then the cation is formulated as $\left[\mathrm{Ru}^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{1 V} \mathrm{~N}(\mathrm{CH})_{+} \mathrm{N}\right]^{2+}$ The $\mathrm{N}(1)-$ Ru(1) distance is $2.15(1) \AA$, which is longer by ca. 0.1 \AA than the value of 1 .

Two structural features are found in $\mathbf{2}$ compared with that of 1 ; one is larger tilting in the wedge-shape of the $\left[\mathrm{Ru}^{\mathrm{IV}} \mathrm{Cp}_{\mathrm{C}}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety in spite of much larger $\mathrm{Ru}^{\mathrm{IV}}-$ N distance of 2 ; the dihedralangles of Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ are $38.77^{\circ}\left(40.84^{\circ}\right.$ for 2 B and 41.67° for 2 C , see Table 4). Nonplanality of the fulvalene ligand is also increased (the dihedral angle between the $\mathrm{C}_{5} \mathrm{H}_{4}$ planes is 18.33° (2A), which is larger by ca. 0.5° than the value of 1). They may be caused by the balkiness of pyrazine than that of acetoritrile. The second is the coordinating direction of pyrazine molecule to the fulvalene ring: the pyrazine plane sits just above the $\mathrm{C}_{5} \mathrm{H}_{+}$plane of the Ru^{11} side, as shown in Fig. 5, like the case of the reported $[\operatorname{RcRcX}]^{+} \mathrm{BF}_{4}^{-}$salts [6.7]. This is probably because of absence of the intermolecular van der Waals contact between the coordinated pyrazine and BF_{4}^{-} $\mathrm{CH}_{3} \mathrm{NO}_{2}$. If this structure remains in solution, the ring current of coordinated pyrazine must influence to the δ of $\mathrm{C}_{5} \mathrm{H}_{4}$ in $\mathrm{Ru}^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety. Salt 2 gives the clear ${ }^{1} \mathrm{H}$-NMR spectrum in acetone-d d_{6}; i.e., six sharp ring protons are found at $\delta 6.69(2 \mathrm{H}, \mathrm{t}, \alpha$-position),

Table 6
Tables Atomic coordinates and isotropic temperature tactors (\AA^{2}) for 2

Atom	\boldsymbol{r}	y	:	$B_{\text {c4 }}^{a}\left(\AA^{2}\right)$
Ru(1)	$0.0329(2)$	$0.25638(7)$	$0.30089(6)$	4.96
Ru(2)	$0.0925(2)$	0.52442 (7)	0.24994(5)	4.43
Ru(3)	$0.2412(1)$	0.0730067	$0.60632(5)$	4.17
Ru(4)	0.2962(2)	$0.35314(7)$	0.59472(5)	4.88
Ru(5)	0.1356(1)	$0.16423(7)$	0.95559(5)	4.13
Ru(6)	$0.1893(2)$	$0.43852(7)$	0.92269(5)	4.12
F(1)	$0.543(2)$	$0.062(2)$	0.878 (1)	19.9
F(2)	$0.767(2)$	$0.033(1)$	$0.8873(8)$	17.6
F(3)	0.599(5)	-0.015(1)	0.922(2)	40.0
F(4)	$0.618(2)$	$0.083(1)$	$0.9427(7)$	15.0
F(5)	$0.386(2)$	$0.054(1)$	$0.4712(5)$	12.3
F(6)	$0.204(3)$	$0.002(1)$	$0.465(1)$	24.8
F(7)	$0.169(3)$	$0.097(2)$	$0.4599(8)$	23.2
F(8)	0.280(2)	0.041 (1)	0.4039(5)	16.9
F(9)	$0.476(3)$	$0.075(2)$	$0.283(1)$	24.1
F(10)	$0.527(2)$	0.179(1)	$0.2920(7)$	14.6
F(11)	$0.422(2)$	0. 135(2)	$0.2316(7)$	20.2
F(12)	$0.658(2)$	$0.117(2)$	0.2412(9)	22.2
F(13)	$0.051(4)$	$0.167(2)$	$0.8055(8)$	23.1
F(1+)	0.049 (3)	$0.267(1)$	0.7935(9)	21.3
F(15)	-0.077(4)	0.216 (2)	0.754(1)	26.4
F(16)	$0.122(4)$	$0.197(2)$	$0.7411(7)$	25.2
F(17)	0.979(4)	$0.316(2)$	$0.1442(6)$	27.5
F(18)	$0.817(3)$	$0.303(1)$	$0.108(2)$	26.6
F(19)	0.982(4)	$0.330(2)$	0.0763(9)	22.2
F(20)	0.977(5)	0.242(2)	$0.091(1)$	27.4
F(2)	$0.978(6)$	$0.331(2)$	0.444(1)	35.4
F(22)	0.852(3)	$0.389(2)$	$0.4835(7)$	23.5
$\mathrm{F}(23)$	(0.773(5)	$0.341(3)$	0.426(1)	39.5
$\mathrm{F}(24)$	$0.893(3)$	$0.415(1)$	0.4121(8)	19.5
(CI)	(0.560)(4)	0.172(1)	0.0627(9)	17.5
($\times 2$)	(0.746(3)	$0.106(1)$	0.059(1)	19.5
(x)3)	0.643 (3)	0.086 (1)	0.7187(8)	15.6
(M 4)	$0.812(3)$	$0.023(1)$	(0.705(1)	18.5
(x) 5	0.418(3)	0.324(2)	0.747(1)	22.6
()$^{(6)}$	0.434(4)	0.00)9(2)	0.832(1)	28.6
O(8)	0. $1111(4)$	$0.008(2)$	0.762(1)	$2+.2$
($\times 9$)	0.347(4)	(0.414(2)	(0.410(2)	30.3
O(10)	$0.204(5)$	0.507(2)	$0.390(1)$	22.3
O(1)	$0.298(3)$	0.434(1)	0.092(2)	25.2
(x12)	(0.379(4)	$0.356(3)$	0.129(2)	37.4
N(1)	-0.180(1)	$0.301(1)$	0.2853(5)	4.2
N(2)	-0.444(2)	$0.362(1)$	$0.262(1)$	11.0
N(3)	0.032(2)	$0.1247(7)$	0.6013 (6)	5.1
$\mathrm{N}(4)$	-0.242(2)	$0.200(1)$	$0.594(1)$	12.6
N(5)	-0.079(1)	(0.2131(6)	0.9468(5)	3.8
$N(6)$	-0.343(2)	$0.282(1)$	0.936(1)	9.3
N(7)	$0.641(3)$	$0.135(1)$	0.080(1)	10.0
N(8)	0.710)(4)	0.043 (1)	$0.731518)$	12.2
$\mathrm{N}(9)$	0.452(3)	$0.297(2)$	0.776(1)	12.2
$\mathrm{N}(10)$	0.185(5)	$0.024(2)$	0.405(2)	16.1
$\mathrm{N}(11)$	0.282(5)	0.459(2)	0.405(2)	16.0
$N(12)$	$0.338(4)$	$0.392(1)$	0.099(2)	21.2
C(1)	-0.051(3)	$0.151(1)$	$0.291(1)$	9.3
C(2)	-0.115(3)	$0.177(1)$	0.330 (1)	11.2
C(3)	-0.006(4)	$0.185(1)$	0.360(1)	10.0
$\mathrm{C}(4)$	$0.130 \times 3)$	$0.164(1)$	0.335 (1)	9.9
C(5)	$0.099(3)$	0.144(1)	0.292(1)	8.9
C(6)	$0.074(2)$	$0.3767(8)$	$0.2771(6)$	4.6
C(7)	$0.118(2)$	$0.358(1)$	$0.3226(7)$	6.5
$\mathrm{C}(8)$	0.237(2)	$0.306(1)$	0.313 (1)	7.6

Table 6 (continued)

Alom	x	\underline{y}	:	$B_{c y}^{a}\left(\AA^{2}\right)$
$\mathrm{C}(9)$	0.254(2)	0.287(1)	$0.268(1)$	7.6
C(10)	$0.141(2)$	0.325(1)	0.2461 (8)	6.4
C(11)	-0.029(2)	$0.4322(8)$	$0.2664(6)$	4.3
C(12)	-0.082(2)	$0.4873(8)$	$0.2983(6)$	5.0
C(13)	-0.146(2)	0.5415(9)	$0.2717(7)$	5.6
C(14)	-0.135(2)	0.522(1)	$0.2261(7)$	5.6
C(15)	-0.059(2)	0.454(1)	$0.2192(6)$	5.2
C(16)	$0.283(4)$	$0.564(3)$	$0.282(1)$	18.2
C(17)	$0.204(3)$	0.620(1)	0.263(1)	10.4
C(18)	$0.211(3)$	0.610(1)	$0.219(1)$	7.4
C(19)	0.279(3)	0.554(2)	0.205(1)	10.2
C(20)	0.328(2)	0.516(1);	$0.244(2)$	12.2
C(21)	-0.267(2)	0.336 (1)	$0.3173(7)$	5.5
C(22)	-0.400(2)	0.366(1)	$0.306(1)$	7.9
C(23)	-0.361(3)	0.330(1)	$0.23+(1)$	8.8
C(24)	-0.226(2)	0.297(1)	$0.2419(7)$	6.7
C(25)	$0.093(3)$	-0.012(1)	0.626 (1)	7.5
C(26)	$0.149(3)$	-9.022(1)	0.579(1)	7.5
C(27)	$0.293(3)$	-0.032(1)	0.577(1)	7.3
C(28)	$0.335(3)$	-0.030(1)	$0.620(1)$	8.4
C(29)	0.214(4)	-0.017(1)	$0.6522(9)$	9.9
C(30)	$0.289(2)$	$0.1961(7)$	$0.6012(6)$	4.1
C(31)	$0.348(2)$	$0.1554(9)$	$0.5609(6)$	5.1
C(32)	0.453(2)	0.107(1)	0.5758(9)	6.7
C(33)	0.453(2)	$0.111(1)$	$0.624(1)$	7.8
C(34)	$0.338(2)$	$0.164(1)$	$0.6417(7)$	6.1
C(35)	$0.193(2)$	$0.2540(8)$	$0.5999(6)$	4.7
C(36)	$0.148(2)$	0.290(1)	$0.5574(7)$	5.8
C(37)	$0.064(2)$	$0.353(1)$	$0.5731(8)$	6.2
C(38)	$0.060(2)$	$0.359(1)$	$0.6210(9)$	6.9
C(39)	$0.139(2)$	$0.299(1)$	$0.6384(6)$	6.2
$\mathrm{C}(40)$	$0.535(3)$	0.352(2)	0.587(2)	13.4
C(4)	0.489(3)	$0.391(2)$	0.555(1)	10.5
C(42)	0.405 (3)	0.448(1)	0.574(1)	8.7
$\mathrm{C}(+3)$	0.414(4)	$0.438(2)$	0.622(1)	10.6
C(t+)	$0.496(5)$	$0.379(2)$	$0.6 .30(1)$	17.4
C(45)	-0.024(2)	$0.136(1)$	0.5578 (8)	7.2
C(46)	-0.164(3)	0.174(1)	$0.557(1)$	10.4
C(47)	-0.18.5(3)	$0.185(1)$	$0.6 .34(1)$	11.2
C(48)	-0.046(2)	$0.151(1)$	0.6387(9)	7.2
C(49)	-0.009(3)	$0.080(1)$	$0.978(1)$	8.4
C(50)	$0.091(4)$	$0.084(1)$	$1.009(1)$	11.2
C(51)	0.233(3)	0.070(1)	0.987(1)	$!3.1$
C(52)	$0.210(3)$	$0.057(1)$	0.941(1)	9.3
C(53)	0.055(3)	$0.062(1)$	0.935(1)	8.0
C(54)	$0.176(2)$	$0.2889(8)$	$0.9399(6)$	4.3
C(55)	0.224(2)	0.263 (1)	0.9830(7)	6.2
C(56)	0.340(2)	0.210)(1)	$0.972(1)$	7.3
C(57)	0.345 (2)	$0.200(1)$	0.9238(9)	6.7
C(58)	$0.239(2)$	$0.2414(9)$	0.9052(6)	4.8
C(59)	0.072(2)	$0.3442(8)$	0.9337(6)	4.0
C(60)	0.020(2)	$0.3926(9)$	$0.9678(6)$	4.6
C(61)	-0.045(2)	0.450(1)	$0.9455(7)$	5.8
C(62)	-0.037(2)	$0.438(1)$	$0.8982(7)$	5.2
C(6.3)	$0.038(2)$	$0.3726(8)$	0.8883 (6)	4.3
C(64)	0.429(2)	0.430(1)	$0.921(1)$	8.6
C(65)	$0.389(3)$	0.470(2)	0.955(1)	10.8
$\mathrm{C}(66)$	$0.306(2)$	0.530(1)	0.936 (1)	7.3
C(67)	$0.313(2)$	0.521(1)	0.8896(9)	6.9
C(68)	$0.395(3)$	$0.461(2)$	0.880(1)	8.8
C(69)	-0.156(2)	0.2416(9)	$0.9817(7)$	5.3
C(70)	-0.289(2)	0:276(1)	0.977 (1)	7.5
C(71)	0.270(2)	0.254 (1)	0.9005(9)	7.8

Table 6 (continued)

Atom	x	y	-	$B_{\text {cil }}^{\prime \prime}\left(\AA^{2}\right)$
C(72)	-0.133(2)	0.216(1)	0.9043(7)	6.1
C(73)	$0.628(4)$	0.130(1)	$0.127(1)$	11.1
C(74)	$0.735(3)$	0.040(2)	$0.778(1)$	11.2
C(75)	0.512(4)	$0.235(2)$	$0.771(2)$	19.2
C(76)	$0.303(4)$	0.070(2)	$0.781(2)$	25.4
C(77)	$0.226(5)$	0.472(4)	$0.455(2)$	24.5
C (78)	0.404(6)	0.357(3)	$0.068(3)$	22.2
B(1)	$0.636(3)$	0.049(3)	$0.905(1)$	16.5
B(2)	$0.274(4)$	$0.060(2)$	0.447(1)	9.5
B(3)	0.527(3)	0.143(3)	$0.252(2)$	17.5
B(4)	$0.952(7)$	$0.312(6)$	$0.117(2)$	29.4
B(5)	-0.010(9)	0.216(2)	$0.781(2)$	29.5
B(6)	0.801(9)	0.379(3)	$0.451(2)$	27.3

${ }^{1} \mathrm{Beq}=4 / 3\left(B_{11} \mathrm{a}^{2}+B_{22} \mathrm{~b}^{2}+B_{11} \mathrm{c}^{2}+B_{13} \mathrm{ac} \cos \beta+\beta_{12} \mathrm{a} c \cos \gamma\right.$ $\left.+B_{23} b \mathrm{c} \cos \alpha\right)$.
B_{11}^{2} are defined by $\exp \left[-\left(h^{2} B_{11}+k^{2} B_{22}+l^{2} B_{33}+2 k / B_{23}+2 h / B_{13}\right.\right.$ $\left.\left.+2 h k B_{12}\right)\right]$.
$6.09\left(2 \mathrm{H}, \mathrm{t}, \beta\right.$-position), $6.16(5 \mathrm{H}, \mathrm{s})$ for $\mathrm{Ru}^{\text {IV }}$ moiety and $4.88(5 \mathrm{H}, \mathrm{s}), 5.34(2 \mathrm{H}, \mathrm{t}, \alpha$-position) and 5.24 ($2 \mathrm{H}, \mathrm{t}$, β-position) for Ru^{11} moiety. Although the former four δ values correspond well to the values of 1 , the latter two signals shift to the higher-field by 0.47 ppm for α-position and 0.43 ppm for β-position compared with the corresponding values of 1 . This suggests that the structure of the cation in solution keeps intact in the solid.

The δ difference ($\Delta \delta$) of the Cp-ring of the $\mathrm{Ru}^{\prime \prime}$ and $\mathrm{Ru}^{\text {IV }}$ moiety ($\Delta \delta ; 1.08 \mathrm{ppm}$)is much larger than the value of $1(\Delta \delta ; 0.81 \mathrm{ppm})$, implying that pyrazine is coordinated to the Ru^{N} more stronger than $\mathrm{CH}_{3} \mathrm{CN}$. Actually, the treatment of 1 with pyrazine gave 2 immediately in acetone or nitromethane as demonstrated by the ${ }^{1} \mathrm{H}$-NMR studies. Considering of the $\Delta \delta$ value of RcRcCl^{+}cation ($1.19 \mathrm{ppm}[8]$), the nucleophiiicity to the $\mathrm{Ru}^{\prime V}$ increases in the order $\mathrm{Cl}^{-}>$pyrazine $>$ acetonitrile $>p$-benzoquinone. The ring protons of coordinated pyrazine are found at $\delta 9.18(2 \mathrm{H}, \mathrm{d}), 8.74$ $(2 \mathrm{H}, \mathrm{d})$, they are shifted to lower field by 0.58 and 0.14 ppm compared with that of free pyrazine ($\delta 8.60$), owing to the lowering of the electron density caused by the coordination of the N to the $\mathrm{Ru}^{\text {IV }}$ atom. The sharp signal at $\delta 4.42$ is ascribed to the free $\mathrm{CH}_{3} \mathrm{NO}_{2}$. Like the case of $\mathbf{1}$, no temperature dependency of the NMR spectra (no signal broading of Cp -ring protons and pyrazine's proton) was observed, implying no electronexchange reaction between the Ru^{11} and $\mathrm{Ru}^{\mathrm{IV}}$ in solution.

From the results in the present studies, it can be concluded that the formula of the oxidation product of RcRc with p-benzoquinone and boron trifluoride diethylether complex is $\left[\mathrm{Ru}^{\prime \prime} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}}\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right]^{2+}\left(\mathrm{BF}_{4}^{-}\right)_{2}$ in which p-benzoquinone is ligated to the $\mathrm{Ru}^{1 V}$ center to fulfill the 18 -electron rule of Ru^{N}. The p-benzoquinone complex is easily substituted by acetonitrile or pyrazine giving the salts $\mathbf{1 , 2}$ formulated

Fig. 4. Projection of the unit cell of 2.
as $\left[\mathrm{Ru}^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{L}\right]^{++}$with the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{N}$ bond. Both salts are soluble in polar organic solvents giving deep red solutions, the structure of the cations in solution remains intact in those of in solid. Unlike the case of RcRcX ${ }^{+}$, no temperature dependency of the NMR spectra by the thermal process was found for 1, 2, suggesting absence of the electron-exchange reactions between the $\mathrm{Ru}^{\text {II }}$ and $\mathrm{Ru}^{\mathrm{IV}}$. The reason for the difference may be ascribed as follows; a higher positive $\mathrm{Ru}^{\prime N}$ charge may be delocalized easily through RuXRu ($\mathrm{Ru}{ }^{\prime \prime}$

Fig. 5. ORTEP draw ing of $\left[R u^{I I} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}{ }^{\text {IV }} \mathrm{N}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2} \mathrm{~N}\right]^{2+} \text { cation at the } 40 \%}\right.$ probability level: perspective view with the numbering of the atoms (button) and projection of a cation onto the Cp plane (top).

Table 7
Select bond distance (A) for 2

atom	atom	distance	atom	atom	distance
Ru(1)	N(1)	2.15 (1)	Ru(2)	C(11)	2.15(2)
Ru(i)	C(1)	2.21(3)	Ru(2)	C(12)	2.17(2)
Ru(1)	C(2)	2.18(3)	Ru(2)	C(13)	$2.21(2)$
Ru(1)	C(3)	2.19(3)	Ru(2)	C(14)	$2.21(2)$
Ru(1)	C(4)	2.21(3)	$\mathrm{Ru}(2)$	C(15)	2.19(2)
$\mathrm{Ru}(1)$	C(5)	2.24(2)	Ru(2)	C(16)	$2.17(4)$
$\mathrm{Ru}(1)$	C(6)	2.44(2)	$\mathrm{Ru}(2)$	C(17)	$2.17(3)$
Ru(1)	C(7)	$2.25(2)$	Ru(2)	C(18)	2.15(2)
Ru(1)	C(8)	$2.15(2)$	Ru(2)	C(19)	2.14(3)
$\mathrm{Ru}(1)$	C(9)	$2.25(2)$	$\mathrm{Ru}(2)$	C(20)	$2.11(2)$
Ru(1)	C(1))	2.24(2)			
Ru(3)	N(3)	$2.11(1)$			
Ru(3)	C(25)	$2.20(2)$	Ru(4)	C(35)	2.15(2)
Ru(3)	C(26)	$2.21(2)$	Ru(4)	C(36)	2.18 (2)
Ru(3)	C(27)	2.22(2)	Ru(4)	C(37)	$2.1(2)$
Ru(3)	C(28)	$2.18(2)$	Ru(4)	C(38)	$2.1(2)$
Ru(3)	C(29)	$2.18(2)$	Ru(4)	C(39)	2.13(2)
Ru(3)	C(30)	2.42(1)	Ru(4)	C(40)	2.15(3)
Ru(3)	C(3)	$2.25(2)$	Ru(4)	C(41)	2.16(3)
Ru(3)	C(32)	2.16(2)	Ru(4)	C(42)	2.17(2)
Ru(3)	C(33)	2.16 (2)	Ru(4)	C(43)	2.17(3)
Ru(3)	C(34)	2.26(2)	Ru(4)	C(44)	$2.20(4)$
Ru(5)	N(5)	2.15(1)			
Ru(5)	C(49)	$2.18(2)$	Ru(6)	C(59)	$2.14(2)$
Ru(5)	C(50)	2.21(3)	Ru(6)	C(60)	$2.15(2)$
Ru(5)	C(51)	2.20 (3)	Ru(6)	C(61)	2.17(2)
Ru(5)	C(52)	2.19(2)	Ru(6)	C(62)	$2.20(2)$
Ru(5)	C(53)	2.22(2)	Ru(6)	C(6.3)	2.19(2)
Ru(5)	C(54)	2.47(2)	Ru(6)	C(64)	$2.15(2)$
Ru(5)	C(55)	$2.25(2)$	Ru(6)	C(6.5)	$2.19(3)$
Ru(5)	C(56)	2.15(2)	Ru(6)	C(66)	$2.14(2)$
Ru(5)	C(57)	$2.17(2)$	Ru(6)	C(67)	2.15(2)
Ru(5)	C(58)	2.25(2)	Ru(6)	C(68)	2.21(2)
C(1)	C(2)	1.31(5)			
C(2)	C(3)	$1.36(5)$	C(1)	C(5)	1.36(4)
(13)	C(4)	1.41(5)	C(4)	C(5)	$1.38(5)$
$C(6)$	C(7)	$1.44(3)$	C(6)	C(1)	1. $4+(3)$
C(6)	C(1)	1.43(2)	C(7)	C(8)	1.45(3)
$C(8)$	C(9)	1.37(4)	C(9)	C(10)	1.41(3)
C(11)	C(12)	1.4(0)(2)	C(1)	C(15)	1.46(2)
C(12)	C(13)	1.41(3)	C(13)	C(14)	1.37(3)
C(14)	C(15)	1.46(3)	C(16)	C(20)	1.46(5)
C(17)	C(18)	1.28(4)	C(18)	C(19)	1.29(4)
C(16)	C(17)	1.40(5)	C(19)	C(2))	1.42(5)
C(21)	C(22)	1.37(3)	C(25)	C(26)	1.43(4)
N(1)	C(21)	1.34(2)	N(1)	C(22)	1.35(3)
N(2)	C(22)	$1.36(4)$	N(1)	C(23)	1.22(4)
C(25)	C(29)	1.37(4)	C(25)	C(26)	1.43(4)
C(26)	C(27)	1.30(3)	C(27)	C(28)	1.34(.5)
C(28)	C(29)	1.40(4)	C(30)	C(31)	1.47(2)
C(30)	C(34)	$1.42(3)$	C(30)	C(35)	1.39(2)
C(31)	C(32)	1.39(.3)	C(33)	C(34)	1.49(3)
C(32)	C(33)	1.41(4)	C(35)	C(36)	1.48(3)
C(35)	C(39)	$1.46(2)$	C(36)	C(37)	1.46(3)
C(37)	C(38)	1.39(3)	C(38)	C(39)	1.43(3)
C(40)	C(41)	1.27(5)	C(40)	C(44)	$1.36(6)$
C(41)	C(42)	1.41(4)	C(42)	C(43)	1.41(4)
C(43)	C(44)	1.36(5)	C(45)	C(46)	1.44(3)
C(47)	C(48)	1.40(3)	N(3)	C(45)	1.40(3)
N(3)	C(48)	1.34(3)	N(4)	C(46)	$1.38(4)$
N(4)	C(47)	1.32(5)	C(49)	C(50)	1.32(5)
C(49)	C(53)	1.37(4)	C(50)	C(51)	$1.40(5)$
C(51)	C(52)	1.41 (5)	C(52)	C(53)	1.41(4)

Table 7 (continued)

atom	atom	distance	atom	atom	distance
$\mathrm{C}(54)$	$\mathrm{C}(55)$	$1.43(3)$	$\mathrm{C}(54)$	$\mathrm{C}(58)$	$1.44(2)$
$\mathrm{C}(54)$	$\mathrm{C}(59)$	$1.41(2)$	$\mathrm{C}(55)$	$\mathrm{C}(56)$	$1.44(3)$
$\mathrm{C}(56)$	$\mathrm{C}(57)$	$1.40(4)$	$\mathrm{C}(57)$	$\mathrm{C}(58)$	$1.35(3)$
$\mathrm{C}(59)$	$\mathrm{C}(60)$	$1.40(3)$	$\mathrm{C}(59)$	$\mathrm{C}(63)$	$1.47(2)$
$\mathrm{C}(60)$	$\mathrm{C}(61)$	$1.43(3)$	$\mathrm{C}(61)$	$\mathrm{C}(62)$	$1.39(3)$
$\mathrm{C}(62)$	$\mathrm{C}(63)$	$1.42(2)$	$\mathrm{C}(64)$	$\mathrm{C}(65)$	$1.27(4)$
$\mathrm{C}(64)$	$\mathrm{C}(68)$	$1.37(5)$	$\mathrm{C}(65)$	$\mathrm{C}(66)$	$1.47(4)$
$\mathrm{C}(66)$	$\mathrm{C}(67)$	$1.36(4)$	$\mathrm{C}(67)$	$\mathrm{C}(68)$	$1.37(4)$
$\mathrm{C}(69)$	$\mathrm{C}(70)$	$1.37(3)$	$\mathrm{C}(71)$	$\mathrm{C}(72)$	$1.41(3)$
$\mathrm{N}(5)$	$\mathrm{C}(69)$	$1.29(2)$	$\mathrm{N}(5)$	$\mathrm{C}(72)$	$1.35(2)$
$\mathrm{N}(6)$	$\mathrm{C}(70)$	$1.32(4)$	$\mathrm{N}(6)$	$\mathrm{C}(70)$	$1.32(4)$

 for $\mathrm{RcRcX}{ }^{+}$, while the non-conjugated $\mathrm{CH}_{3} \mathrm{CN}$ and the balkiness of pyrazine prevent the formation of conjugated $R u^{I I} \cdots L--R u^{I V}$ species, and that gives the trapped valence ($\mathrm{Ru}^{11} \mathrm{Ru}^{\mathrm{IV}}$) NMR spectra for 1 and 2 , however, further investigations are required in order to confirm this conclusions.

References

[1] K. Kirchner. K.S. Kwan. H. Taube, J. Chem. Soc. 113 (1991) 7039: K. Kirchner, K.S. Kwan, H. Taube, Inorg. Chem. 32 (1993) 4947: K. Kirchner, K. Mereiter, R. Schmid, J. Chem. Soc., Chem. Commun. (1994) 161; K. Kirchner, K. Merreiter, A. Umfahre. R. Schmid. Organometallics 13 (1994) 1886: K. Kirchner, K. Merreiter, K. Mauthner, R. Schmid. Organometallics $13(1094) 3405$; K. Matuthner. K. Merreiter. R. Schmid. K. Kirchner, Organometallies 1.3 (1904) 5054.
[2] K. Kirchner. K. Merciter, R. Schmid. H. Taube, Inorg. Chem. 32 (1993) 1430.
[3] K. Kirchner, K. Mereiter, R. Schmid, H. Taube, Inorg, Chem. $32(1993) 5553$.
[4] K. Hashidrume, H. Tobita. H. Ogino. Organometallics 14 (1995) 1187.
[5] H. Ogino, H. Tobita, K. Hiashidzume, M. Shimoi, J. Chem. Soc. Chem. Commun. (1989) 828.
[6] M. Watanabe, I. Motoyama, M. Shimoi, H. Sano. J. Organomet. Chem. 517 (1996) 115.
[7] M. Watinabe, I. Moioyama. M. Shimoi. T. Iwamoto, Inorg. Chem. 33 (1994) 25 i 8.
[8] M. Watanabe. T. Iwamoto, A. Kubo, S. Kawata, H. Sano. I. Motoyama. Inorg. Chem. 31 (1992) 177.
[9] M. Watanabe, T. Iwamoto, H. Sano. I. Motoyama, J. Organomet. Chem. 442 (1992) 309.
[10] M. Watanabe. T. Iwamoto, H. Sano, I. Motoyama, J. Coord. Chem. 26 (1992) 223; M. Watanabe, T. Iwamoto, H. Sano, I. Motoyama, Inorg. Chem. 32 (1992) 5223.
[II] M. Watanabe, I. Motoyama. T. Takayama M. Shimoi. H. Sano. J. Organomet. Chem. 496 (1995) 87.
[12] TEXSAN. Crystal Structure Analysis package. Molecular Structure Corporation. 1985.
[13] D.T. Cromer, J.T. Waber, International Table for X-ray Crystallography, Vol. IV. The Kynoch Press, Birmingham. UK. Table 2.2A (1974).
[14] J.A. Ibers. W.C. Hamilton. Acta Crystallogr. 17 (1964) 781.
[15] D.C. Creagh. W.J. McAuiey, International Table for X-ray Crystallography, Vol. C. Kluwer Academic Publishers, Boston. Table 4.2.6.8, pp. 219-222, 1992.
[16] T.A. Annan, A. Ozarowski, Z. Tianand, D.G. Tuck, J. Chem. Soc. Dalton Trans. 2931 (1992); T.A. Annan, Z. Tian, D.G. Tuck. J. Chem. Soc. Dalton Trans. (1991) 19: M.K. Khan, R.C. Steevensz, D.G. Tuck, J.G. Noltes, P.W.R. Corfield, Inorg. Chem. 19 (1980) 3407.
[17] C. Landgrafe, W.S. Sheldrick, J. Chem, Soc., Dalton Trans. (1996) 989; W. Luginhuhl, P. Zbinden, P.A. Pittet, T. Armbruster, H.B. Btirgi, A.E. Merbach. A. Ludi, Inorg. Chem. 30 (1991) 2350.
[18] P.E. Riley, C.E. Capshew, R. Pettit. R.E. Davis, Inorg. Chem. 17 (1978) 408.
[19] M. Sato, K. Suzuki, H. Asano, M. Sekino, Y. Kawata, J. Organometal. Chem. 470 (1994) 263.
[20] S.A. Koch, M. Millar, J. Am. Chem. Soc. 105 (1983) 3362.
[21] C.C. Costain, J. Chem. Phys. 29 (1958) 864.
[22] T.C. Wright, G. Wilkinson, M. Motevalli, M.B. Hursthouse, J. Chem. Soc.. Dalton Trans. (1986) 2017.
[23] Private Communication.
[24] L. Pauling. The Nature of the Chemical Bond, 3rd ed., Cornell University Press, 1960.
[25] E.H. Rodd, Chemistry of Carbon Compounds 1-A. Ch. 6, p. 357. 1951.
[26] M.W. Droege, W.D. Harman, H. Taube, Inorg. Chem. 26 (1987) 1309.
[27] P.A. Lay, H. Magnuson. H. Taube, Inorg. Chem. 27 (1988) 2364.
[28] C. Creutz, H. Taube, J. Am. Chem. Soc. 9] (1969) 3988.
[29] C. Creutz, H. Taube, J. Am. Chem. Soc. 95 (1973) 1686.
[30] M.J. Begley, P. Hubbeerstey, J. Stroud, J. Chem. Soc., Datton. Trans. (1996) 2323.
[31] S. Kitagawa, M. Munakata, T. Tanimura, Inorg. Chem. 31 (1992) 1714.
[32] C.L. Klein, R.J. Majeste, L.W. Trefonas, C. O`Connor, Inorg. Chem. 21 (1982) 1891.
[33] S. Kitagawa. M. Munakata. T. Tanimura. Chem. Lett. (1991) 623.

[^0]: Corresponding author.

[^1]: ${ }^{\mathrm{a}} \mathrm{Beq}=4 / 3\left(B_{11} \mathrm{a}^{2}+B_{22} \mathrm{~b}^{2}+B_{11} \mathrm{c}^{2}\right)$.
 $B_{i 1}$ are defined by $\exp \left[-\left(h^{2} B_{11} k^{2} B_{22}+l^{2} B_{33}+2 k l B_{23}+2 h i B_{i 3}+\right.\right.$ $\left.\left.2 h k B_{12}\right)\right]$.

